CST logo

#42344 Receptor Tyrosine Kinase Antibody Sampler Kit

 
CSTコード 包装
希望納入価格 (円)
国内在庫 i
2019年3月20日11時40分 現在
ご登録代理店情報 i
カスタマー情報にご登録いただいた代理店を表示しています。
ご登録代理店の変更はこちら
#42344T1 Kit107,000
ログインすると国内在庫状況がご確認いただけます。

RTK 製品一覧

42344 の推奨プロトコール i

最適な結果を得るために:Cell Signaling Technology (CST) 社は、各製品の推奨プロトコールを使用することを強くお薦めいたします。
推奨プロトコールはCST社内試験の徹底的なバリデーションに基づいて作成されておりますので、正確かつ再現性の高い結果が得られます。

注:各製品に最適化されたプロトコールをリンクしています。

 
キット内容 容量 用途 種交差性 ホモロジー† 検出分子量 アイソタイプ
Phospho-Tyrosine (P-Tyr-1000) MultiMab™ Rabbit mAb mix #8954 20 µl WB, IP, IF-IC, F All N/A Rabbit IgG
Met (D1C2) XP® Rabbit mAb #8198 20 µl WB, IP, IHC-Bond, IHC-P, IHC-F, IF-IC, F H 140, 170 Rabbit IgG
EGF Receptor (D38B1) XP® Rabbit mAb #4267 20 µl WB, IP, IHC-P, IF-IC, F H, M, Mk 175 Rabbit IgG
PDGF Receptor α (D1E1E) XP® Rabbit mAb #3174 20 µl WB, IP, IHC-P, IF-IC, F H, M 190 Rabbit IgG
PDGF Receptor β (28E1) Rabbit mAb #3169 20 µl WB, IP, IHC-P, IHC-F, IF-IC H, M, R 190 Rabbit IgG
FGF Receptor 1 (D8E4) XP® Rabbit mAb #9740 20 µl WB, IP, IHC-P, IF-IC, F H, M, R, Mk 92 , 120, 145 Rabbit IgG
FLT3 (8F2) Rabbit mAb #3462 20 µl WB, IP H, M 130 nonglycosylated form;160 glycosylated mature form Rabbit IgG
HER2/ErbB2 (D8F12) XP® Rabbit mAb #4290 20 µl WB, IHC-P H, M R 185 Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody #7074 100 µl WB Goat

†Species predicted to react based on 100% sequence homology.

Applications Key: W=Western Blotting, IP=Immunoprecipitation, IF-IC=Immunofluorescence (Immunocytochemistry), F=Flow Cytometry, IHC-Bond=IHC-Leica® Bond™, IHC-P=Immunohistochemistry (Paraffin), IHC-F=Immunohistochemistry (Frozen)
Reactivity Key: All=All Species Expected, H=Human, M=Mouse, Mk=Monkey, R=Rat

貯法
-20℃
社内データ

Western Blotting

Western Blotting

After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO® is added and emits light during enzyme catalyzed decomposition.

Western Blotting

Western Blotting

Western blot analysis of extracts from Baf3/FLT3 transfected cells and SEM leukemia cells, using FLT3 (8F2) Rabbit mAb.

Western Blotting

Western Blotting

Western blot analysis of extracts from various cell lines, using PDGF Receptor β (28E1) Rabbit mAb.


Western Blotting

Western Blotting

Western blot analysis of extracts from NIH/3T3 and human skeletal muscle cells (SKMC), untreated or treated with PDGF-BB, using PDGF Receptor α (D1E1E) XP® Rabbit mAb.

Western Blotting

Western Blotting

Western blot analysis of extracts from A-431, BxPC3 and HeLa cells using EGF Receptor (D38B1) XP® Rabbit mAb.

Western Blotting

Western Blotting

Western blot analysis of extracts from SK-BR-3 and MCF7 cells using HER2/ErbB2 (D8F12) XP® Rabbit mAb.


Western Blotting

Western Blotting

Western blot analysis of extracts from HT-29 (Met+), SK-BR-3 (Met-), and T-47D (Met-) cells using Met (D1C2) XP® Rabbit mAb (upper) or β-Actin Antibody #4967 (lower).

Western Blotting

Western Blotting

Western blot analysis of extracts from A-204 (FGFR1 positive), KG-1a (FGFR1 oncogenic partner-FGFR1 fusion), A172 (FGFR1 low), and HT-29 (FGFR1 negative) cells using FGF Receptor 1 (D8E4) XP® Rabbit mAb (upper) and β-Actin (D6A8) Rabbit mAb #8457 (lower).

Flow Cytometry

Flow Cytometry

Flow cytometric analysis of A-204 cells using FGF Receptor 1 (D8E4) XP® Rabbit mAb (blue) compared to concentration matched Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (red).


Western Blotting

Western Blotting

Western blot analysis of extracts from A-431 cells, untreated (-) or treated with Human Epidermal Growth Factor (hEGF) #8916 (100 ng/ml, 5 min; +), using Phospho-Tyrosine (P-Tyr-1000) MultiMab™ Rabbit mAb mix. Western blot image was obtained using the Odyssey® Infrared Imaging System (LI-COR® Biotechnology).

IHC-Leica® Bond™

IHC-Leica® Bond™

Immunohistochemical analysis of paraffin-embedded human colon adenocarcinoma using Met (D1C2) XP® Rabbit mAb performed on the Leica® Bond™ Rx.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human colon carcinoma using PDGF Receptor β (28E1) Rabbit mAb.


IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human glioblastoma using PDGR Receptor α (D1E1E) XP® Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded MDA-MB-468 (amplified EGFR, left), HT-29 (low EGFR, middle) and CAMA-1 (EGFR negative, right) cells using EGF Receptor (D38B1) XP® Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human breast carcinoma using HER2/ErbB2 (D8F12) XP® Rabbit mAb.


IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human metastatic lung carcinoma using Met (D1C2) XP® Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human breast carcinoma using FGF Receptor 1 (D8E4) XP® Rabbit mAb.

IP

IP

Immunoprecipitation of phospho-tyrosine proteins from A-431 cell extracts, untreated (-) or treated with Human Epidermal Growth Factor (hEGF) #8916 (100 ng/ml, 5 min; +) (lanes 3 and 4), using Phospho-Tyrosine (P-Tyr-1000) MultiMab™ Rabbit mAb mix. Western blot analysis was performed using the same antibody. Lanes 1 and 2 are 10% input.


IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human glioblastoma using PDGF Receptor β (28E1) Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human colon using PDGR Receptor α (D1E1E) XP® Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human hepatocellular carcinoma using EGF Receptor (D38B1) XP® Rabbit mAb.


IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded SK-BR-3 (Her2 high, left) and MCF7 cell pellets (Her2 low, right) using HER2/ErbB2 (D8F12) XP® Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human hepatocellular carcinoma using Met (D1C2) XP® Rabbit mAb.

Flow Cytometry

Flow Cytometry

Flow cytometric analysis of K-562 cells, untreated (green) or Gleevec®-treated (blue), using Phospho-Tyrosine (P-Tyr-1000) MultiMab™ Rabbit mAb mix.


IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human kidney using FGF Receptor 1 (D8E4) XP® Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded U-87MG cells, showing membrane localization, using PDGF Receptor β (28E1) Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded U-118 MG xenograft using PDGF Receptor α (D1E1E) XP® Rabbit mAb in the presence of control peptide (left) or antigen specific peptide (right).


IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human placenta using EGF Receptor (D38B1) XP® Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human papillary renal cell carcinoma using Met (D1C2) XP® Rabbit mAb.

IF-IC

IF-IC

Confocal immunofluorescent analysis of C2C12 cells, serum-starved (left), treated with H2O2 (2 mM, 10 min; middle), or treated with H2O2 followed by λ phosphatase (right), using Phospho-Tyrosine (P-Tyr-1000) MultiMab™ Rabbit mAb mix (green). Actin filaments were labeled with DY-554 phalloidin (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).


IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human lung carcinoma using FGF Receptor 1 (D8E4) XP® Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded HCC827 xenograft using PDGF Receptor α (D1E1E) XP® Rabbit mAb.

IHC-F (frozen)

IHC-F (frozen)

Immunohistochemical analysis of frozen U-87MG xenograft using PDGF Receptor beta (28E1) Rabbit mAb.


IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human lung carcinoma using EGF Receptor (D38B1) XP® Rabbit mAb.

IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded cell pellets, MKN-45 (left) and T-47D (right), using Met (D1C2) XP® Rabbit mAb.

IF-IC

IF-IC

Confocal immunofluorescent analysis of NIH/3T3 cells, serum-starved (left) or PDGF-treated (right), using PDGF Receptor beta (28E1) Rabbit mAb (green). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).


Flow Cytometry

Flow Cytometry

Flow cytometric analysis of U-87 MG cells (blue) and H1703 cells (green) using PDGF Receptor α (D1E1E) XP® Rabbit mAb.

Flow Cytometry

Flow Cytometry

Flow cytometric analysis of Jurkat cells (red) and Kyse70 cells (blue), using EGF Receptor (D38B1) XP® Rabbit mAb.

IHC-F (frozen)

IHC-F (frozen)

Immunohistochemical analysis of frozen MKN-45 xenograft using Met (D1C2) XP® Rabbit mAb.


IF-IC

IF-IC

Confocal immunofluorescent analysis of A204 cells (positive, left), KG-1 cells (positive, middle) and A172 cells (weak expression, right) using FGF Receptor 1 (D8E4) XP® Rabbit mAb (green). Blue pseudocolor= DRAQ5® #4084 (fluorescent DNA dye).

IF-IC

IF-IC

Confocal immunofluorescent analysis of A-204 (left) and U-87 MG cells (right) using PDGF Receptor α (D1E1E) XP® Rabbit mAb (green). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).

IF-IC

IF-IC

Confocal immunofluorescent analysis of A549 cells, untreated (left) or treated with human epidermal growth factor (right), using EGF Receptor (D38B1) XP® Rabbit mAb (green). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).


Flow Cytometry

Flow Cytometry

Flow cytometric analysis of T-47D cells (blue) and HT-29 cells (green) using Met (D1C2) XP® Rabbit mAb.

IF-IC

IF-IC

Confocal immunofluorescent analysis of HT-29 and T-47D cells using Met (D1C2) XP® Rabbit mAb (green). Actin filaments were labeled with DY-554 phalloidin (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).

バックグラウンド

Tyrosine phosphorylation plays a key role in cellular signaling (1). In cancer studies, unregulated tyrosine kinase activity can drive malignancy and tumor formation by generating inappropriate proliferation and survival signals (2). Antibodies specific for phospho-tyrosine have been invaluable reagents in these studies (3,4).

Met, a tyrosine kinase receptor for hepatocyte growth factor (HGF), is a heterodimer made of α- and β-subunits (5,6). The cytoplasmic region of the β-chain is essential for tyrosine kinase activity. Interaction of Met with HGF results in autophosphorylation at multiple tyrosines (Tyr1003, 1234/1235, 1349) which recruit downstream signaling components, including Gab1, c-Cbl, and PI3 kinase (7-9). Altered Met levels and/or tyrosine kinase activities are found in several types of tumors, including renal, colon, and breast (10,11).

The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (12,13). c-Src mediated phosphorylation of EGF receptor (EGFR) at Tyr845 provides a binding surface for substrate proteins (14-16). The SH2 domain of PLCγ binds at phospho-Tyr992, activating PLCγ-mediated downstream signaling (17). Adaptor protein c-Cbl binds at phospho-Tyr1045, leading to receptor ubiquitination and degradation (18,19). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (20), while phospho-Tyr1148 and -Tyr1173 provide a docking site for the Shc scaffold protein, playing a role in MAP kinase signaling (13).

Platelet derived growth factor (PDGF) family proteins bind to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ) (21). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (22). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of signal transduction molecules such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. Signaling pathways initiated by activated PDGF receptors lead to control of cell growth, actin reorganization, migration, and differentiation (23). Tyr751 and Tyr740 of PDGFRβ regulate binding and activation of PI3 kinase (24,25).

Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases, after ligand binding and dimerization (26,27). Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (28). The other phosphorylated tyrosine residues (Tyr463, 583, 585, 730, and 766) may provide docking sites for downstream signaling components such as Crk and PLCγ (29,30).

FMS-related tyrosine kinase 3 (FLT3), a member of the type III receptor tyrosine kinase family, is expressed on early hematopoietic progenitor cells and supports growth and differentiation within the hematopoietic system (31,32). FLT3 is activated after binding with its ligand FL, which results in a cascade of tyrosine autophosphorylation and tyrosine phosphorylation of downstream targets (33). The p85 subunit of PI3 kinase, SHP2, GRB2 and Shc are associated with FLT3 after FL stimulation (34-36). Tyr589/591 may play an important role in regulation of FLT3 tyrosine kinase activity (37).

The ErbB2 (HER2) proto-oncogene encodes a transmembrane, receptor-like glycoprotein with tyrosine kinase activity (38). ErbB2 kinase activity can be activated in the absence of a ligand when overexpressed and through associations with other ErbB family members (39). Phosphorylation at Tyr877 may be involved in regulating ErbB2 activity. Autophosphorylation of ErbB2 at Tyr1248 and Tyr1221/1222 couples ErbB2 to the Ras-Raf-MAP kinase signal transduction pathway (38,40).

  1. Schlessinger, J. (2000) Cell 103, 211-25
  2. Blume-Jensen, P. and Hunter, T. (2001) Nature 411, 355-65
  3. Ward, S.G. et al. (1992) J Biol Chem 267, 23862-9
  4. Glenney, J.R. et al. (1988) J Immunol Methods 109, 277-85
  5. Cooper, C.S. et al. Nature 311, 29-33.
  6. Bottaro, D.P. et al. (1991) Science 251, 802-4.
  7. Bardelli, A. et al. (1997) Oncogene 15, 3103-11.
  8. Taher, T.E. et al. (2002) J Immunol 169, 3793-800.
  9. Schaeper, U. et al. (2000) J Cell Biol 149, 1419-32.
  10. Eder, J.P. et al. (2009) Clin Cancer Res 15, 2207-14.
  11. Sattler, M. and Salgia, R. (2009) Update Cancer Ther 3, 109-118.
  12. Hackel, P.O. et al. (1999) Curr Opin Cell Biol 11, 184-9.
  13. Zwick, E. et al. (1999) Trends Pharmacol Sci 20, 408-12.
  14. Cooper, J.A. and Howell, B. (1993) Cell 73, 1051-4.
  15. Hubbard, S.R. et al. Nature 372, 746-54.
  16. Biscardi, J.S. et al. (1999) J Biol Chem 274, 8335-43.
  17. Emlet, D.R. et al. (1997) J Biol Chem 272, 4079-86.
  18. Levkowitz, G. et al. (1999) Mol Cell 4, 1029-40.
  19. Ettenberg, S.A. et al. (1999) Oncogene 18, 1855-66.
  20. Rojas, M. et al. (1996) J Biol Chem 271, 27456-61.
  21. Deuel, T.F. et al. (1988) Biofactors 1, 213-7.
  22. Betsholtz, C. et al. (2001) Bioessays 23, 494-507.
  23. Ostman, A. and Heldin, C.H. (2001) Adv Cancer Res 80, 1-38.
  24. Panayotou, G. et al. (1992) EMBO J 11, 4261-72.
  25. Kashishian, A. et al. (1992) EMBO J 11, 1373-82.
  26. Powers, C.J. et al. (2000) Endocr Relat Cancer 7, 165-97.
  27. Reilly, J.F. et al. (2000) J Biol Chem 275, 7771-8.
  28. Mohammadi, M. et al. (1996) Mol Cell Biol 16, 977-89.
  29. Mohammadi, M. et al. (1991) Mol Cell Biol 11, 5068-78.
  30. Larsson, H. et al. (1999) J Biol Chem 274, 25726-34.
  31. Shurin, M.R. et al. (1998) Cytokine Growth Factor Rev 9, 37-48.
  32. Naoe, T. et al. (2001) Cancer Chemother Pharmacol 48 Suppl 1, S27-30.
  33. Namikawa, R. et al. (1996) Stem Cells 14, 388-95.
  34. Beslu, N. et al. (1996) J Biol Chem 271, 20075-81.
  35. Zhang, S. and Broxmeyer, H.E. (2000) Biochem Biophys Res Commun 277, 195-9.
  36. Zhang, S. et al. (1999) J Leukoc Biol 65, 372-80.
  37. Mizuki, M. et al. (2000) Blood 96, 3907-14.
  38. Muthuswamy, S.K. et al. (1999) Mol Cell Biol 19, 6845-57.
  39. Qian, X. et al. (1994) Proc Natl Acad Sci U S A 91, 1500-4.
  40. Kwon, Y.K. et al. (1997) J Neurosci 17, 8293-9.
使用例
製品をご使用いただいて研究を発表されましたら、ぜひお知らせください
 
関連製品
12630   SignalFire™ Plus ECL Reagent
12757   SignalFire™ Elite ECL Reagent
6883   SignalFire™ ECL Reagent
7074   Anti-rabbit IgG, HRP-linked Antibody
7075   Anti-biotin, HRP-linked Antibody
7722   Blue Loading Buffer Pack
7723   Red Loading Buffer Pack
7727   Biotinylated Protein Ladder Detection Pack
9803   Cell Lysis Buffer (10X)
9997   Tris Buffered Saline with Tween® 20 (TBST-10X)
9999   Nonfat Dry Milk

The manufacture, use, sale and import of this product is within the scope of one or more intellectual property rights (including patents and patent applications) owned or controlled by Cell Signaling Technology. The purchase of this product conveys to the buyer a non-transferrable right to use the purchased product only in research conducted by the buyer. The sale of the product is expressly conditioned on the buyer not using the products or its components (1) to analyze or reverse engineer the product for its chemical/physical properties and composition (including e.g., identification of the sequence); (2) in manufacturing; (3) to provide a service, information, or data to an unaffiliated third party for payment; (4) for therapeutic, diagnostic or prophylactic purposes; (5) resale, whether or not such product are resold for use in research; or for any other commercial purpose. For information on purchasing a license to this product for purposes other than research, contact Cell Signaling Technology, Inc. Business Development at busdev@cellsignal.com.
BOND is a trademark of Leica Biosystems Melbourne Pty. Ltd. No affiliation or sponsorship between CST and Leica Microsystems IR GmbH or Leica Biosystems Melbourne Pty. Ltd is implied.
Use of Cell Signaling Technology (CST) Motif Antibodies within certain methods (e.g., U.S. Patents No. 7,198,896 and 7,300,753) may require a license from CST. For information regarding academic licensing terms please have your technology transfer office contact CST Legal Department at CST_ip@cellsignal.com. For information regarding commercial licensing terms please contact CST Pharma Services Department at ptmscan@cellsignal.com.
LI-COR is a registered trademark of LI-COR, Inc.
Odyssey is a registered trademark of LI-COR, Inc.
DRAQ5 is a registered trademark of Biostatus Limited.
MultiMab is a trademark of Cell Signaling Technology, Inc.
SignalStain is a trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.
LEICA is a registered trade​mark of Leica Microsystems IR GmbH.
LumiGLO is a registered trademark of Kirkegaard & Perry Laboratories.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.

本製品は試験研究用です。

Receptor Tyrosine Kinase Antibody Sampler Kit

Immune Cell Signaling Pathways

お薦めリンク

テクニカルサポート

製品特集

Applications